Hydroprocessing:
Hydrocracking & Hydrotreating

Chapters 7 & 9
Purpose

Hydrotreating

- Remove hetero atoms & saturate carbon-carbon bonds
 - Sulfur, nitrogen, oxygen, & metals removed
 - Olefinic & aromatic bonds saturated
- Reduce average molecular weight & produce higher yields of fuel products
- Minimal cracking
- Minimal conversion – 10% to 20% typical
- Products suitable for further processing or final blending
 - Reforming, catalytic cracking, hydrocracking

Hydrocracking

- Severe form of hydroprocessing
 - Break carbon-carbon bonds
 - Drastic reduction of molecular weight
- 50%+ conversion
- Products more appropriate for diesel than gasoline
Characteristics of Petroleum Products

Refining Overview – Petroleum Processes & Products,
by Freeman Self, Ed Ekholm, & Keith Bowers, AIChE CD-ROM, 2000
Hydroprocessing Trends

- Hydrogen is ubiquitous in refinery & expected to increase
 - Produces higher yields & upgrade the quality of fuels

- The typical refinery runs at a hydrogen deficit
 - As hydroprocessing becomes more prevalent, this deficit will increase
 - As hydroprocessing progresses in severity, the hydrogen demands increase dramatically

- Driven by several factors
 - Heavier & higher sulfur crudes
 - Reduction in demand for heavy fuel oil
 - Increased use of hydrodesulfurization for low sulfur fuels
 - More complete protection of FCCU catalysts
 - Demand for high quality coke
 - Increased production of diesel
Sources of Hydrogen

- **Catalytic Reformer**
 - *The most important source of hydrogen for the refiner*
 - Continuously regenerated reformer: 90 vol%
 - Semi-continuously regenerated reformer: 80 vol%

- **FCCU Offgas**
 - 5 vol% hydrogen with methane, ethane & propane
 - Several recovery methods (can be combined)
 - Cryogenic
 - Pressure swing adsorption
 - Membrane separation

- **Steam-Methane Reforming**
 - *Most common method of manufacturing hydrogen*
 - 90 to 95 vol% typical purity

- **Synthesis Gas**
 - Gasification of heavy feed
 - Hydrogen recovery – pressure swing adsorption or membrane separation
 - More expensive than steam reforming but can use low quality by product streams
Hydroprocessing Catalysts

Hydrotreating
- Desired function
 - Cobalt molybdenum: sulfur removal & olefin saturation
 - Nickel molybdenum: nitrogen removal & aromatic saturation
- Reactor configuration
 - Fixed bed – temperature to control final sulfur content
- Selective catalysts for sulfur removal without olefin saturation
 - Maintaining high octane rating

Hydrocracking
- Crystalline silica alumina base with a rare earth metal deposited in the lattice
 - Platinum, palladium, tungsten, and/or nickel
- Feed stock must first be hydrotreated
- Catalysts deactivate & coke does form even with hydrogen present
 - Hydrocrackers require periodic regeneration of the fixed bed catalyst systems
 - Channeling caused by coke accumulation a major concern
 - Can create hot spots that can lead to temperature runaways
- Reactor configuration
 - Ebullient beds – pelletized catalyst bed expanded by upflow of fluids
 - Expanded circulating bed – allows continuous withdrawal of catalyst for regeneration
<table>
<thead>
<tr>
<th>Company</th>
<th>State</th>
<th>Site</th>
<th>Atmospheric Crude Distillation Capacity (barrels per stream day)</th>
<th>Desulfurization, Diesel Fuel Downstream Charge Capacity, Current Year (barrels per stream day)</th>
<th>Desulfurization, Gasoline Downstream Charge Capacity, Current Year (barrels per stream day)</th>
<th>Desulfurization, Heavy Gas Oil Downstream Charge Capacity, Current Year (barrels per stream day)</th>
<th>Desulfurization, Kerosene And Jet Downstream Charge Capacity, Current Year (barrels per stream day)</th>
<th>Desulfurization, Naphtha/Reformer Feed Downstream Charge Capacity, Current Year (barrels per stream day)</th>
<th>Desulfurization, Other Distillate Downstream Charge Capacity, Current Year (barrels per stream day)</th>
<th>Desulfurization, Residual Downstream Charge Capacity, Current Year (barrels per stream day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExxonMobil Refining</td>
<td>Louisiana</td>
<td>BATON ROUGE</td>
<td>524,000</td>
<td>113,500</td>
<td>131,700</td>
<td>0</td>
<td>0</td>
<td>78,000</td>
<td>123,300</td>
<td>0</td>
</tr>
<tr>
<td>ExxonMobil Refining</td>
<td>Texas</td>
<td>BAYTOWN</td>
<td>596,400</td>
<td>0</td>
<td>80,000</td>
<td>110,000</td>
<td>34,500</td>
<td>157,000</td>
<td>156,800</td>
<td>206,500</td>
</tr>
<tr>
<td>BP</td>
<td>Texas</td>
<td>TEXAS CITY</td>
<td>475,000</td>
<td>59,000</td>
<td>47,000</td>
<td>105,000</td>
<td>79,000</td>
<td>114,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP</td>
<td>Indiana</td>
<td>WHITING</td>
<td>420,000</td>
<td>112,300</td>
<td>26,000</td>
<td>100,000</td>
<td>2,000</td>
<td>71,500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PDVSA</td>
<td>Louisiana</td>
<td>LAKE CHARLES</td>
<td>440,000</td>
<td>117,500</td>
<td>77,000</td>
<td>0</td>
<td>29,000</td>
<td>123,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hovensa LLC</td>
<td>Virgin Islands</td>
<td>KINGSHILL</td>
<td>525,000</td>
<td>65,000</td>
<td>50,000</td>
<td>145,000</td>
<td>60,000</td>
<td>115,000</td>
<td>39,000</td>
<td>40,000</td>
</tr>
<tr>
<td>ConocoPhillips</td>
<td>New Jersey</td>
<td>LINDEN</td>
<td>250,000</td>
<td>108,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>97,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sunoco</td>
<td>Pennsylvania</td>
<td>PHILADELPHIA</td>
<td>355,000</td>
<td>0</td>
<td>65,000</td>
<td>0</td>
<td>0</td>
<td>88,000</td>
<td>0</td>
<td>113,000</td>
</tr>
<tr>
<td>Marathon Petroleum</td>
<td>Louisiana</td>
<td>GARYVILLE</td>
<td>275,000</td>
<td>126,000</td>
<td>89,000</td>
<td>106,000</td>
<td>0</td>
<td>49,500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Motiva Enterprises</td>
<td>Louisiana</td>
<td>NORCO</td>
<td>250,000</td>
<td>76,000</td>
<td>75,400</td>
<td>0</td>
<td>0</td>
<td>38,500</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Hydrotreating Technologies

<table>
<thead>
<tr>
<th>Provider</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDTECH</td>
<td>Hydrotreating, CDHydro & CDHDS</td>
</tr>
<tr>
<td>Chevron Lummus Global LLC</td>
<td>Hydrotreating, ISOTREATING</td>
</tr>
<tr>
<td>DuPont</td>
<td>Hydrotreating</td>
</tr>
<tr>
<td>Haldor Topsoe A/S</td>
<td>Hydrotreating</td>
</tr>
<tr>
<td>UOP</td>
<td>Hydrotreating</td>
</tr>
<tr>
<td>Axens</td>
<td>Hydrotreating, diesel</td>
</tr>
<tr>
<td>GTC Technology</td>
<td>Hydrotreating, pyrolysis gasoline</td>
</tr>
<tr>
<td>UOP</td>
<td>Hydrotreating/desulfurization. SelectFining</td>
</tr>
<tr>
<td>Chevron Lummus Global LLC</td>
<td>Hydrotreating - RDS/VRDS/UFR/OCR</td>
</tr>
<tr>
<td>Axens</td>
<td>Hydrotreating - resid</td>
</tr>
<tr>
<td>Axens</td>
<td>Hydrodearomatization. 2 stage HDS/HAD</td>
</tr>
</tbody>
</table>
Characteristics of Hydrotreating

![Graph showing hydrogen consumption vs pressure for different processes.](image)

Hydrodesulfurization

- **Sulfur**
 - Sulfur converted to hydrogen sulfide (H_2S)
 - Added hydrogen breaks carbon-sulfur bonds & saturates remaining hydrocarbon chains
 - Form of sulfur bonds
 - Sulfur in naphtha generally mercaptans (thiols) & sulfides
 - In heavier feeds, more sulfur as disulphides & thiophenes
 - Light ends
 - Heavier distillates make more light ends from breaking more complex sulfur molecules

- **Unsaturated carbon-carbon bonds**
 - Olefins saturated – one hydrogen molecule added for each double bond
 - Olefins prevalent in cracked streams – coker or visbreaker naphtha, catalytic cracker cycle oil, catalytic cracker gasoline
 - Aromatic rings hydrogenated to cyclopentanes (naphthenes)
 - Severe operation
 - Hydrogen consumption strong function of complexity of the aromatics
 - Prevalent in heavy distillate hydrotreating, gas oil hydrotreating, hydrocracking

- **Selective catalysts available for hydrotreating cat gasoline for sulfur removal but not saturate olefins**
 - Maintain high octane ratings
Hydrogen Consumption

- Chemical consumption due to hydrogenation reactions
 - Cracking reactions of carbon-carbon bonds minimal in hydrotreating, even during aromatic saturation
- Hydrogen is lost in equilibrium with light gases
 - Amount is significant & may double amount required for sulfur removal
- Hydrogen absorbed in liquid products
 - Usually small compared to sulfur removal needs – 1 lb/bbl
- Hydrogen removed with purge gas
 - Used to maintain a high purity of hydrogen — light ends dilute the hydrogen concentration
 - Usually small compared to sulfur removal needs
General Effects of Process Variables

- Reactor inlet temperature & pressure
 - Increasing temperature increases hydrogenation but decreases the number of active catalyst sites
 - Temperature control is used to offset the decline in catalyst activity
 - Increasing pressure increases hydrogen partial pressure & increases the severity of hydrogenation

- Recycle hydrogen
 - Require high concentration of hydrogen at reactor outlet
 - Hydrogen amount is much more than stoichiometric
 - High concentrations required to prevent coke laydown & poisoning of catalyst
 - Particularly true for the heavier distillates containing resins and asphaltenes

- Purge hydrogen
 - Removes light ends & helps maintain high hydrogen concentration
Increasing Severity

- Naphtha hydrotreating
- Distillate (light and heavy) hydrotreating
- Gas oil hydrotreating
Naphtha Hydrotreating

- Naphtha hydrotreated primarily for sulfur removal
 - Mostly mercaptans (RSH) & sulfides (R₂S)
 - Some disulfides (RSSR), & thiophenes (ring structures)
- Cobalt molybdenum on alumina most common catalyst
- Chemical hydrogen consumption typically 50 to 250 scf/bbl
 - For desulfurization containing up to 1 wt% sulfur — 70 to 100 scf/bbl
 - Significant nitrogen & sulfur removal — 250 scf/bbl
Naphtha Hydrotreating Process

- Liquid hourly space velocity ~ 2
- Hydrogen recycle about 2,000 scf/bbl
- Stripper overhead vapor to saturates gas plant
 - Recovery of light hydrocarbons & removal H2S
- Fractionator Pentane/hexane overhead to isomerization
 - Bottoms to reformer

Distillate Hydrotreating

- In general, all liquid distillate streams contain sulfur compounds that must be removed
- Saturate olefins in diesel to improve the cetane number
- Hydrogenation at the high pressure produces small amounts of naphtha from hydrocracking
 - Required to get at the embedded sulfur
 - Diesel hydrotreater stabilizer will have an upper sidestream draw producing the naphtha which is recycled to motor gasoline processing
Distillate Hydrotreating Process

- Hydrogen recycle starts at 2,000 scf/bbl; consumption 100 to 400 scf/bbl
- Conditions highly dependent upon feedstock
 - Distillate (jet fuel & diesel) with 85% - 95% sulfur removal — 300 psig & hydrogen consumption of 200 - 300 scf/bbl
 - Saturation of diesel for cetane number improvement — over 800 scf/bbl hydrogen & up to 1,000 psig

Gas Oil Hydrotreating

- Catalytic cracker feedstocks (atmospheric gas oil, light vacuum gas oil, solvent deasphalting gas oil) hydrotreated severely
 - Sulfur removal
 - Opening of aromatic rings
 - Removal of heavy metals
- Desulfurization of gas oil can be achieved with a relatively modest decomposition of structures
- Gas oils can be contaminated with resins & asphaltenes
 - Deposited in hydrotreater
 - Require catalyst replacement with a shorter run length than determined by deactivation
 - Guard chamber may be installed to prolong bed life
- Nickel molybdenum catalyst system for severe hydrotreating
- Gas oil units more expensive because of more intensive hydrogenation
 - Quench
 - Multi-stage flash
 - More complex strippers
Gas Oil Hydrotreating Process

- Normally two reactor beds – temperature rise
- Hydrogen partial pressure related to ring saturation & amount of sulfur
 - For low ring saturation 300 psig may be sufficient
 - 1,200 psig will convert 25% ring saturation & somewhat less than 95% sulfur removal
 - Pressures as high as 1,500 psig can achieve saturation of 30% of aromatic rings
- Hydrogen absorption of 300 scf/bbl could give about 80% sulfur removal & only require 300 psig
 - No ring saturation at these mild conditions

Hydrocracking

- Purpose: process gas oil to break carbon-carbon bonds of large aromatic compounds & remove contaminants
 - Hydrogenation (addition of hydrogen)
 - Cracking (carbon-carbon scission) of aromatic bonds
- Typically creates distillate range products, not gasoline range products
U.S. Refinery Hydrocracking

<table>
<thead>
<tr>
<th>Company</th>
<th>State</th>
<th>Site</th>
<th>Atmospheric Crude Distillation Capacity (barrels per stream day)</th>
<th>Cat Cracking: Fresh Feed Downstream Charge Capacity, Current Year (barrels per stream day)</th>
<th>Cat Cracking: Recycled Feed Downstream Charge Capacity, Current Year (barrels per stream day)</th>
<th>Cat Hydrocracking, Distillate Downstream Charge Capacity, Current Year (barrels per stream day)</th>
<th>Cat Hydrocracking, Gas Oil Downstream Charge Capacity, Current Year (barrels per stream day)</th>
<th>Cat Hydrocracking, Residual Downstream Charge Capacity, Current Year (barrels per stream day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExxonMobil Refining</td>
<td>Louisiana</td>
<td>BATON ROUGE</td>
<td>524,000</td>
<td>242,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ExxonMobil Refining</td>
<td>Texas</td>
<td>BAYTOWN</td>
<td>596,400</td>
<td>215,500</td>
<td>8,000</td>
<td>28,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP</td>
<td>Texas</td>
<td>TEXAS CITY</td>
<td>475,000</td>
<td>175,000</td>
<td>8,000</td>
<td>60,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PDVSA</td>
<td>Louisiana</td>
<td>LAKE CHARLES</td>
<td>440,000</td>
<td>147,000</td>
<td>3,000</td>
<td>0</td>
<td>42,000</td>
<td>0</td>
</tr>
<tr>
<td>Motiva Enterprises</td>
<td>Louisiana</td>
<td>NORCO</td>
<td>250,000</td>
<td>120,000</td>
<td>0</td>
<td>0</td>
<td>38,000</td>
<td>0</td>
</tr>
<tr>
<td>ExxonMobil Refining</td>
<td>Texas</td>
<td>BEAUMONT</td>
<td>359,100</td>
<td>117,700</td>
<td>0</td>
<td>65,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Valero Energy Corp</td>
<td>Texas</td>
<td>CORPUS CHRISTI</td>
<td>146,000</td>
<td>117,000</td>
<td>0</td>
<td>0</td>
<td>49,500</td>
<td>0</td>
</tr>
<tr>
<td>Koch Industries</td>
<td>Texas</td>
<td>CORPUS CHRISTI</td>
<td>305,000</td>
<td>106,700</td>
<td>0</td>
<td>13,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP</td>
<td>California</td>
<td>LOS ANGELES</td>
<td>265,500</td>
<td>102,500</td>
<td>0</td>
<td>50,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WRB Refining LLC</td>
<td>Illinois</td>
<td>WOOD RIVER</td>
<td>322,000</td>
<td>101,000</td>
<td>0</td>
<td>0</td>
<td>41,000</td>
<td>0</td>
</tr>
</tbody>
</table>
Hydrocracking Technologies

<table>
<thead>
<tr>
<th>Provider</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axens</td>
<td>Hydrocracking</td>
</tr>
<tr>
<td>Chevron Lummus Global LLC</td>
<td>Hydrocracking. ISOCRACKING</td>
</tr>
<tr>
<td>DuPont</td>
<td>Hydrocracking</td>
</tr>
<tr>
<td>Haldor Topsoe A/S</td>
<td>Hydrocracking</td>
</tr>
<tr>
<td>Shell Global Solutions</td>
<td>Hydrocracking</td>
</tr>
<tr>
<td>UOP</td>
<td>Hydrocracking</td>
</tr>
<tr>
<td>ExxonMobil Research & Engineering</td>
<td>Hydrocracking, moderate pressure. MPHC</td>
</tr>
<tr>
<td>Chevron Lummus Global LLC</td>
<td>Hydrocracking, resid</td>
</tr>
<tr>
<td>Axens</td>
<td>Hydrocracking, residue. H-OilOC</td>
</tr>
</tbody>
</table>
Use of Yield Charts & Equations

<table>
<thead>
<tr>
<th>Volume</th>
<th>Mass</th>
<th>Density</th>
<th>Ave BPT</th>
<th>Watson K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For cracking</td>
<td>Δ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur</td>
<td>2 mol/mol S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved in product</td>
<td>1 lb/bbl feed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2S</td>
<td>Sulfur in Feed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3-</td>
<td>1.0 + 0.09*(Y LN)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC4</td>
<td>0.377*(Y LN)</td>
<td>Calculate</td>
<td>Pure</td>
<td></td>
</tr>
<tr>
<td>NC4</td>
<td>0.186*(Y LN)</td>
<td>Calculate</td>
<td>Pure</td>
<td></td>
</tr>
<tr>
<td>C5 to 180°F</td>
<td>Fig. 7.3 (Y LN)</td>
<td>Calculate</td>
<td>Calculate</td>
<td>131°F</td>
</tr>
<tr>
<td>180 to 400°F</td>
<td>Fig. 7.4</td>
<td>Calculate</td>
<td>Calculate</td>
<td>281°F</td>
</tr>
<tr>
<td>400 to 520°F</td>
<td>Δ</td>
<td>Calculate</td>
<td>460°F</td>
<td>Fig. 7.5</td>
</tr>
</tbody>
</table>
Hydrocracking Feeds

- Typical feeds
 - Cat cracker “cycle oil”
 - Highly aromatic with sulfur, small ring & polynuclear aromatics, catalyst fines; usually has high viscosity
 - Hydrocracked to form high yields of jet fuel, kerosene, diesel, & heating oil
 - Gas oils from visbreaker
 - Aromatic
 - Gas oil from the delayed coker
 - Aromatic, olefinic, with sulfur

- Usually more economical to route atmospheric & vacuum gas oils to the cat cracker to produce primarily gasoline & some diesel
Gas Oil Hydrocracker Feed

- Hydrocracking does a better job of processing aromatic rings without coking than catalytic cracking
 - Hydrogen used to hydrogenate polynuclear aromatics (PNAs)
 - Reduces frequency of aromatic condensation
- Hydrocracking not as attractive as delayed coking for resid high in resins, asphaltenes & heteroatom compounds
 - Heteroatoms & metals prevalent in resins & asphaltenes poison hydroprocessing catalysts
 - High concentrations of resins & asphaltenes will still ultimately coke
- Feeds limited to a Conradson Carbon Number (CCR) of 8 wt%
- Feeds require high pressures & large amounts of hydrogen
Gas Oil Hydrocracker Products

- Hydrocracking primarily to make distillates
 - In US hydrocracking normally a specialized operation used to optimize catalytic cracker operation
 - In US cat cracking preferred to make gasoline from heavier fractions
- Hydrocracking capacity is only about 8% of the crude distillation capacity
 - Not all refineries have hydrocrackers
- Intent is to minimize the production of heavy fuel oil
 - Light ends are approximately 5% of the feed.
 - Middle distillates (kerosene, jet fuel, diesel, heating oil) still contain uncracked polynuclear aromatics

All liquid fractions are low in sulfur & olefins
Hydrocracking Chemistry

- Cracking reactions
 - Saturated paraffins cracked to form lower molecular weight olefins & paraffins
 - Side chains cracked off small ring aromatics (SRA) & cycloparaffins (naphthenes)
 - Side chains cracked off resins & asphaltenes leaving thermally stable polynuclear aromatics (PNAs)
 - But condensation (dehydrogenation) also occurs if not limited by hydrogenation
Hydrocracking Chemistry

Hydrogenation reactions
- Exothermic giving off heat
- Hydrogen inserted to saturate newly formed molecule from aromatic cracking
- Olefins are saturated to form light hydrocarbons, especially butane
- Aromatic rings hydrogenated to cycloparaffins (naphthenes)
- Carbon-carbon bonds cleaved to open aromatic & cycloparaffins (naphthenes) rings
- Heteroatoms form hydrogen sulfide, ammonia, water, hydrogen chloride
Hydrocracking Chemistry

- **Isomerization Reactions**
 - Isomerization provides branching of alkyl groups of paraffins and opening of naphthenic rings

- **Condensation Reactions**
 - Suppressed by hydrogen
Hydrogen Consumption

- Carbon bonds with heteroatoms broken & saturated
 - Creates light ends
 - Heavier distillates make more light ends from breaking more complex molecules
 - Sulfur converted to hydrogen sulfide
 - Nitrogen converted to ammonia
 - Oxygen converted to water
 - Organic chlorides converted to hydrogen chloride
Hydrogen Consumption

- Saturation of carbon-carbon bonds
 - Olefins saturated to form light hydrocarbons.
 - Consumption stoichiometric — one hydrogen molecule added for each double bond
 - Aromatic rings hydrogenated to cycloparaffins (naphthenes).
 - Severe operation — hydrogen consumption strong function of complexity of the aromatics
- Isomerization reactions generally not present
- Metals deposited directly on the catalysts
 - Excess metals reduce catalyst activity & promote dehydrogenation (produces coke & hydrogen)
Hydrogen Consumption

- Have cracking of carbon-carbon bonds
 - Severe operation — hydrogen consumption strong function of complexity of the aromatics

- Hydrogen lost in mixture with products
 - Equilibrium with light gases
 - Significant — may double amount required for sulfur removal
 - Absorbed in liquid products
 - Usually small compared to hydrogen used for sulfur removal
 - Lost with purge gas
Single Stage Hydrocracking

Refining Overview – Petroleum Processes & Products,
by Freeman Self, Ed Ekholm, & Keith Bowers, AIChE CD-ROM, 2000
Severe Two Stage Hydrocracking

Refining Overview – Petroleum Processes & Products,
by Freeman Self, Ed Ekholm, & Keith Bowers, AIChE CD-ROM, 2000